skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Starvaggi, Nicholas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We report an approach for soft-template encapsulation of PCMs vita organocatalyzed photoredox ATRP using silica surfactants with surface-immobilized initiators. 
    more » « less
  2. This minireview addresses responsive polymer capsules and their applications beyond drug delivery, focusing on structure–property relationships. 
    more » « less
  3. Microencapsulation of pristine core liquids in polymer shells has critical applications in thermal energy storage and management, targeted drug delivery, and carbon capture, among others. Herein, we report a novel encapsulation approach based on a double emulsion soft-template to produce microcapsules comprised of an ionic liquid (IL) core in a degradable polymer shell. We demonstrate the production of [IL-in-oil1]-in-oil2 (IL/O1/O2) double emulsions, in which the oil interphase (O1) contains a CO2-derived polycarbonate bearing vinyl pendant groups, tetrathiol small molecule crosslinker, and photoinitiator; upon irradiation of the double emulsion under low shear, thiol–ene crosslinking of the loaded species results in the formation of a robust shell around the pure IL droplets. The core–shell structures have enhanced physisorption for CO2 uptake compared to the bulk IL, which is consistent with the combined capacity of the IL/shell alone and demonstrates more rapid uptake due to an enhanced gas–liquid interface. This approach to microencapsulation of functional liquids offers researchers a distinct route to fabricate composite architectures with a pristine core for applications in separations, transport of cargo, and gas uptake. 
    more » « less
  4. Silica particles were modified to achieve tailored wettability and interfacial activity at various interfaces, allowing for fabrication of hybrid architectures. 
    more » « less
  5. A modular platform for 3D printing fluid-containing structures is reported. Pickering emulsion-templated fluid-filled polymeric capsules were synthesized and incorporated into viscous liquids to produce inks for direct ink writing. Printed objects could be cured by solvent removal or irradiation with ultraviolet light to give monolithic structures containing capsules of fluid, with porosity dependent upon the curing method. 
    more » « less